SPIS TREŚCI

1. DRUPEK S. - Stan i perspektywy nawadniania podkornych .. 01
2. GRABARCZYK S. - Przyrodniczo i techniczne przesłanki nawadniania ogrodniczych w Polsce. 13
3. KANISZEWSKI S. - Tendencje i kierunki nawadniania kroplowego wod∩u w świecie i w Polsce. ... 26
4. PACHOLAK B. - Efekty produkcyjne nawadniania kroplowych i deszczowniowych w sadownictwie. 35
5. PIERZGŁAŁSKI K. - Możliwości stosowania nawadniania wodnym w ogrodniciwie. 44
6. SŁOWIK K. - Tendencje i kierunki mininawodnienia roślin sadowniczych w świecie i w Polsce 55
7. WISIELKO-GRZESZKOWICZ H. - Tendencje i kierunki nawadniania roślin ozdobnych w świecie i w Polsce. .. 66

STAN I PERSPEKTYWY NAWADNIAŃ PODKORONNYCH

1. Informacje następne

Podkorne minirzasanie zostało opracowane w IPMZ w drugiej połowie lat 70-tych w myśl założenia, że najbardziej skuteczną i efektywną formą wprawdowanie postępu technicznego i technologicznego jest stopniowa innowacyjność. Propozycje gwałtownych zmian w dziedzinie techniki i technologii trafiają na nieprzygotowaną bazę w produkcji i w instalowaniu, jak również na nieprzygotowany odbiorcę lub użytkownika nowości.

Tak więc podkorne minirzasanie jest dość podsumowuje innowację techniczną w stosunku do deszczowni i jest formą nawadniania umieszczalonym, a w jego opracowaniu w naszym Instytucie bardzo znaczący, inspirujący wpływ miał przedujący sadownicy, którzy określił jaką technologią nawadniania ocenują pod względem nakładu i organizacji pracy podczas eksploatacji, a także odnośnie nie zagrażają zdrowotności sadów.

Następnie wzięto pod uwagę rodową i jakość wody, jaką może być użyta do nawadniania sadów w naszym kraju w ramach koncentracji sadownictwa i wszczęcie techniczne możliwości produkcji lub zakupu na rynku niezbędnych elementów do całego systemu nawadniania. Znane jest bowiem zasada, że w więcej rokach zastosowane do nowej konstrukcji gotowych elementów, tym łatwiej i szybciej przebiega wdrożenie.

Z gotowych istniejących na rynku elementów i podzespołów
wzięto do systemu /ryc.1/:
1 - głębino-wo napowietrzniowo agregaty pompowe,
2 - rury na podziemne rurociągi /ryc.2/,
3 - rury z PVC o małych średnicach na przewody napowietrzniowo
zasiewające wodę minizraszacz,
4 - kształtki i aksamitwę wodociągową, jak również urządzenie
regulujące lub sterujące.

Jako nowe elementy, mające cechy wynalazku lub innowacji technicznej wprowadzono:
1 - minizraszaczki /ryc.3 i 4/ najpierw typu Koliber w trzech
odziesiach /patent nr 110159 UP PRL/, a później typu Metak
w trzech seriiach /oryginalny projekt wynalazczy/,
2 - łączniki - obejmy do wprowadzania wody z podziemnych ruro-
ciągów nawadniających /ryc.2/,
3 - specjalne korki - zaślepki do zamykania końców napowietrz-
chnych przewodów,
4 - filtry do oczyszczania wody z części stałych takich jak
piasek, odczynniki rdzy z urządzeń oraz różne części płynią-
ce w wodzie,
5 - kompensatory do rozdziałowania liniowej termycznej wydłużal-
ności w/w napowietrzniowych przewodów.

Wykonawstwo nowych elementów wymienionych pod pozycją 1, 2, 3
i 4 zorganizowano w systemie produkcji rzemieślniczej, kompen-
satory skonstruowano z "rynkowych" gumowych węży.

Dzięki przedstawionemu postępowaniu wodownictwo w kraju
otrzymało, w krótkim czasie od powstania pomysłu bez jakie-
kolwiek pomocy ze strony władz centralnych i rezerwatowych,
autoryzację nawadniania, która pozwoliła i nadal pozwala podstawa-
we wyzagania, jakie obecnie się stania systemem nawadniającym,
zwłaszcza w endemicznie, tj.:
- prostotę instalowania w istniejących sadach, zarówno młodych,
jak i będących w stanie pełnej produkcji bez powodzenia
szkód w "drzewostanie" i w produkcji,
- wysokie stopnie niezawodności działania,
- małą wrażliwość na jakość wody, m.in. pod względem tzw. zas-
żelania,
- niskie zużycie energii do napędu pomp, ponieważ minizraszacze
pracują przy ciśnieniu nie większym niż 0,12 HPA /1,2 at/,
- szczególne zasługi związane z kontr-
nowanym sposobem podawania wody, które nie wychodzi poza
zanieg systemu korzeniowego drzew,
- nie stwarzanie sprzyjających warunków do rozwoju chorób
grzybowych drzew owocowych.

2. Stan rozwoju podkoronowego minizraszania

Zagadnienie to można rozpatrywać w dwóch aspektach, tj. w
aspekcie upowszechniania się metody, o zatem pod względem li-
zęby sadów lub globalnej powierzchni wyposażonej w podkorne
nawadnianie oraz w aspekcie doskonalenia systemu w rozwiąza-
niach technicznych i technologicznych.

Ogólnie rozwoju obszaruowego, to można stwierdzić tylko
ogólnie, że w ciągu 6-7 lat od opracowania metody, w podkorono-
we minizraszanie zostało użycjonych wiele dziesiątek wy-
sokoprodukcyjnych sadów na wielu setkach hektarów. Dotyczy to
zarówno sadów kilkuhektarowych, jak i tych, które są urządzono
nawadnianiu większych powierzchni /kilkanaście/, ponad 20 ha itp.
Dokładnych czy nawet przybliżonych cyfr co do liczby osób czy powierzchni globalnej nie można podać, ponieważ brak jest w tej sprawie zarówno oficjalnej, jak i nieoficjalnej statystyki. Przedstawione wyżej ogólne dane są tylko wartościami szacunkowymi, utworzonymi na podstawie wyryczenych informacji, pochodzących od wykonawców systemów oraz z innych nieoficjalnych i niesystematycznych źródeł.

Jeśli chodzi o rozmiarzenie terytorialne, to najwięcej instalacji zostało wykonanych w regionach koncentracji sadowości w Polsce środkowej, gdzie są najmniej opady atmosferyczne, a zarazem lekkie gleby. Późniejsze instalacje wykonano jednak w różnych regionach. Pilotową instalację wykonano też w Egipcie w warunkach pustynnych.

Co się tyczy zakładania instalacji, to przewidzianą ich większość zbudował rzemieślnicy zakład ob. Leszka Szwasłady i Jerzego Habera. W sezonie przypadko nie doszło do wykonania instalacji z powodu niedostrzeżonej mocy przerobowej wymienionego zakładu. Poważne trudności w budowie instalacji były niedostatkami materiałowe, zwłaszcza dlatego, że budowa systemów przydaje się na okres załamu gospodarczego w kraju i ogólnego krzyzyu.

Równocześnie z szerokim upowszechniania się pierwszej standardowej wersji podkordonowego minizrączania prowadzone były i nadal są prowadzone prace konstrukcyjne i technologiczne, związane z doskonaleniem systemu i zwiększeniem możliwości jego różnorodnych zastosowań, a także do obniżenia kosztów instalowania.

Do najpóźniejszych działań z tego zakresu można zaliczyć:

- opracowanie nowego typu minizrączacych typu Motyl - 100 a następnie dwa jego dodatkowych wersji, tj. Motyl -160 i Motyle - 25 /cyfry oznaczają nominalny wydatek minizrączacy przy ciśnieniu 0,1 Mpa, tj. i et./
- zastosowanie na przewody nawadniające oprócz rur sztymowych z PVC, również elastycznych przewodów z polietylenu,
- opracowanie pustyjnej wersji minizrączania podkordonowego do zastosowania w krajach o klimacie ekstrem - gorącym, z możliwością zastosowania również w naszym kraju,
- opracowanie kilku typów filtrów do wody,
- opracowanie kilku wersji automatyzacji systemów podkordonowego nawadniania,
- uściślenie notady obliczenia zapotrzebowania wody do tych nawadniań i dawek nawadniających,
- uściślenie zasad hydraulicznego obliczania sieci rurociągów w tym systemie.

Charakterystyczną cechą eksploatacyjną minizrączacy typu Motyl, odróżniającą je od minizrączaczy typu Koliber jest to, że mogą one pracować w dużym przedziale roboczego ciśnienia, tj. od ok. 1 a do 15 a słupa wody /0,01 do 0,12 Mpa/, że mają prawie dwukrotnie większe zasięg roboczy z powodu nowego systemu rury oraz, że mogą być poddana różnym modyfikacjom, mającym na celu bądź kilkakrotnie zwiększenie wydatku przy takich samej roboczej ciśnieniu i stałych wielkościach wytwarzonych otworów.

Należy przy tym podkreślić, że wszystkie wersje omawianych minizrączaczy, podobnie jak wcześniejsze Kolibry oznaczają się małą wrażliwością na zepchnięcie oraz chemiczne i biologiczne zanieczyszczenie, co jest jak wiadomo bardzo ważne dla wodę.
dziań ich eksploatacji. Oprócz typowych wersji sadowniczych w praktycznych próbach znajduje się też wersja eksploatacyjna lub "tunelową" motyli.

Korzystając z okazji przedstawienia przez rozmowyowych w dziedzinie podkronowego miniszczania opartego o istniejące już miniszczanie typu Koliber i Motyl można poinformować, że w 1983 w Faletach w zasuwanej fazie ce prawcynad nową typem tych sadowniczy, tj. nad impulsową wadniczną podkronową.

Podstawo etatnie prawie gotowy do wdrożenia znajduje się trzy odziany sadowniczy kroplowych, tj. z kroplownikami samo- eje czyszczącymi się jedno i wielowlotowymi oraz saarmo- ujacementi ciśnieniu.

3. Perspektywy rozwoju podkronowego miniszczania

Podkronowe miniszczanie jest dotychczas dominującą metodą nawadniania sadów w naszym kraju. Składa się na to sześć przekatnych obiektywowych przykładów w których częściowo powiedziano już w referencjach. Biorąc pod uwagę ten aspekt, przeważa na wiele kierunków prace modernizacyjne można wyrazić przypuszczenie, że metody ta nadal będą znajdować zastosowanie w przyszłości, przede wszystkim z uwagi na niezawodność działania i ma- łym wrażliwości na jakość wody, a także ze względu na walory technologiczne tego sposobu nawadniania drzew owocowych w warunkach klimatyczno-glebowych naszego kraju. Walory te wyróż- niają pozycję podkronowej miniszczania głównie na tle nawad- nienia doszczewomanych, ale również w niektórych aspektach na tle nawadnić kroplowych. Można przewidywać również, że w mien- rę dopracowywania elementów, podzespołów, jak i całego syste-
Rys. 1. Schemat układu instalacji do podziemnego nawadniania

1. średnia średnica
2. poręba
3. zadek
4. podziemny rurowy główny
5. podziemny rurowy pomocniczy
6. zawory masowych rur
7. regulacja rurociągów
8. rozdzielacze uzwojen
9. regu λa
10. zasilacz
11. przewodniki

Rys. 2. Schemat montażowy przewodu nawadniającego

1. Rurociąg podziemny z rur z nieplastykowanego PVC lub innych
2. Opaska łącznikowa
3. Przeznaczka stalowa
4. Kolanko
5. Zawór odcinający
6. Przeznaczka stalowa
7. Łańcuch elastyczny
8. Rurociąg powierzchniowy
9. Kompensator linowej wydłużalności termicznej
10. Miniszacznice Kollmer
11. Załączka rurociągu powierzchniowego
12. Odsłonacz
Wygląd zewnętrzny

K-180
K-360
K-300

Kształt zasięgu powierzchniowego

r

K-180
K-360
K-300

Parametry techniczne

<table>
<thead>
<tr>
<th>Wielkość ciśnienia (MPa)</th>
<th>Wydatek (l/h)</th>
<th>Wymiary zasięgu minizrośnaczów, r (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,08</td>
<td>86,0</td>
<td>1,6</td>
</tr>
<tr>
<td>0,09</td>
<td>91,0</td>
<td>1,85</td>
</tr>
<tr>
<td>0,10</td>
<td>96,0</td>
<td>2,1</td>
</tr>
</tbody>
</table>

Rys. 3. Minizrośnacze „Koliber”

Rys. 4. Umiejscowione nawodnienie minizrośnaczami typu „Koliber-300”

1-Rurociąg powierzchniowy
2-Zrósznacz Koliber-300
3-Zasięg zraszania
Wygląd zewnętrzny

Kształt zasięgu powierzchniowego

<table>
<thead>
<tr>
<th>Wielkość ciśnienia (MPa)</th>
<th>Wydatek (l/h)</th>
<th>Wymiary zasięgu minizraszacza (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,05</td>
<td>72</td>
<td>(a = 195) (b = 225)</td>
</tr>
<tr>
<td>0,06</td>
<td>78</td>
<td>(a = 215) (b = 245)</td>
</tr>
<tr>
<td>0,07</td>
<td>85</td>
<td>(a = 235) (b = 260)</td>
</tr>
<tr>
<td>0,08</td>
<td>90</td>
<td>(a = 250) (b = 275)</td>
</tr>
<tr>
<td>0,10</td>
<td>101</td>
<td>(a = 265) (b = 305)</td>
</tr>
<tr>
<td>0,12</td>
<td>110</td>
<td>(a = 275) (b = 320)</td>
</tr>
<tr>
<td>0.10*</td>
<td>162</td>
<td>(a = 320) (b = 350)</td>
</tr>
<tr>
<td>0.12*</td>
<td>182</td>
<td>(a = 335) (b = 380)</td>
</tr>
<tr>
<td>0.10**</td>
<td>25</td>
<td>(a = 60) (b = 75)</td>
</tr>
</tbody>
</table>

Rys.5. Minizraszacz typu Motyl-100, Motyl-160 i Motyl-25

*-parametry Motyla 160 **-parametry Motyla 25